The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a 'demon', could exist in three-dimensional (3D) metals containing more than one species of charge carrier. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal.
View Article and Find Full Text PDFLiquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe.
View Article and Find Full Text PDFDoping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal.
View Article and Find Full Text PDFJ Struct Biol
September 2022
This study examines how microscale differences in skeletal ultrastructure affect the crystallographic and nanomechanical properties of two related bryozoan species: (i) Hornera currieae, which is found at relatively quiescent depths of c. 1000 m, and (ii) Hornera robusta, which lives at depths of 50-400 m where it is exposed to currents and storm waves. Microstructural and Electron Backscatter Diffraction (EBSD) observations show that in both species the secondary walls are composed of low-Mg calcite crystallites that grow with their c-axes perpendicular to the wall.
View Article and Find Full Text PDFA hierarchically ordered porous carbon electrocatalyst with exclusively surface-anchored cobalt species, dubbed Co@HOPC, is synthesized from polyaniline and cobalt-functionalized silica microparticles templates, and its high electrocatalytic activity for the oxygen evolution reaction (OER) is demonstrated. The material requires a small potential (320 mV) to drive the reaction with a current density of 10 mA cm and a small Tafel slope of 31.2 mV dec .
View Article and Find Full Text PDF