Publications by authors named "P J Bates"

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS.

View Article and Find Full Text PDF

Purpose: Trauma and orthopaedic (T&O) surgery relies on medical implants and materials, often resulting in metalwork wastage (prosthesis, screws, nails, and plates). This places an economic strain on healthcare services and the environment. Our primary outcome is to quantify the implant wastage across the literature, and secondarily investigate the associated costs in this specialty.

View Article and Find Full Text PDF

Plant lipids represent a fascinating field of scientific study, in part due to a stark dichotomy in the limited fatty acid (FA) composition of cellular membrane lipids versus the huge diversity of FAs that can accumulate in triacylglycerols (TAGs), the main component of seed storage oils. With few exceptions, the strict chemical, structural, and biophysical roles imposed on membrane lipids since the dawn of life has constrained their FA composition to predominantly lengths of 16-18 carbons and containing 0-3 methylene-interrupted carbon-carbon double bonds in cis-configuration. However, over 450 "unusual" FA structures can be found in seed oils of different plants (Ohlrogge et al.

View Article and Find Full Text PDF

Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal.

View Article and Find Full Text PDF