Publications by authors named "P Iu Baranov"

Background: Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far.

Results: We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.

View Article and Find Full Text PDF

Fraser syndrome is a rare autosomal recessive disorder characterized by multiple congenital malformations, including cryptophthalmos, syndactyly, and renal agenesis, which can lead to severe complications beginning at the embryonic stage. Mutations in genes encoding extracellular matrix proteins such as FRAS1, FREM1, FREM2, and the associated trafficking protein GRIP1, are implicated in Fraser syndrome. These proteins are critical for maintaining epithelial integrity during embryogenesis, with deficiencies leading to tissue detachment and blistering phenotypes in mouse models.

View Article and Find Full Text PDF

Ribosome profiling (Ribo-Seq) has revolutionised our understanding of translation, but the increasing complexity and volume of Ribo-Seq data present challenges for its reuse. Here, we formally introduce RiboSeq.Org, an integrated suite of resources designed to facilitate Ribo-Seq data analysis and visualisation within a web browser.

View Article and Find Full Text PDF

Upstream open reading frames (uORFs) are a class of translated regions (translons) in mRNA 5' leaders. uORFs are believed to be pervasive regulators of the translation of mammalian mRNAs. Some uORFs are highly repressive but others have little or no impact on downstream mRNA translation either due to inefficient recognition of their start codon(s) or/and due to efficient reinitiation after uORF translation.

View Article and Find Full Text PDF

Tissue development is a complex spatiotemporal process with multiple interdependent components. Anatomical, histological, sequencing, and evolutional strategies can be used to profile and explain tissue development from different perspectives. The introduction of scRNAseq methods and the computational tools allows to deconvolute developmental heterogeneity and draw a decomposed uniform map.

View Article and Find Full Text PDF