Publications by authors named "P Istvan Nagy"

Extracellular vesicles (EVs) are implicated in inter-organ communication, which becomes particularly relevant during aging and exercise. DNA methylation-based aging clocks reflect lifestyle and environmental factors, while regular exercise is known to induce adaptive responses, including epigenetic adaptations. Twenty individuals with High-fitness (aged 57.

View Article and Find Full Text PDF

This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Background And Aims: Observational healthcare data are an important tool for delineating patients' inflammatory bowel disease (IBD) journey in real-world settings. However, studies that characterize IBD cohorts typically rely on a single resource, apply diverse eligibility criteria, and extract variable sets of attributes, making comparison between cohorts challenging. We aim to longitudinally describe and compare IBD patient cohorts across multiple geographic regions, employing unified data and analysis framework.

View Article and Find Full Text PDF

Evolutionary medicine emerged in the late twentieth century, integrating principles of natural selection and adaptation with the health sciences. Today, with a rapidly widening gap between the biology of and its environment, maladaptation or maladaptive disorders can be detected in almost all diseases, including liver dysfunction. However, in hepatology, as in most medical specialties, evolutionary considerations are neglected because the majority of the medical community is not familiar with evolutionary principles.

View Article and Find Full Text PDF