Background: The Rh blood group system is highly complex, polymorphic, and immunogenic. The presence of RHD gene variants in RhD negative pregnant women is a challenge in fetal RHD genotyping as it may influence the antenatal management of anti-D prophylaxis. The aim of this study was to determine the efficiency of a non-invasive single-exon approach in the obstetric population of Western Sweden in a 31-month follow up.
View Article and Find Full Text PDFAntigen-specific class-switched antibodies are detected at the same time or even before IgM in serum of non-vaccinated individuals infected with SARS-CoV-2. These derive from the first wave of plasmablasts formed. Hence, the phenotype and specificity of plasmablasts can reveal information about early B-cell activation.
View Article and Find Full Text PDFBackground: RhD immunization is still the major cause of hemolytic disease of the fetus and newborn. Fetal RHD genotyping during pregnancy followed by tailored anti-D prophylaxis for pregnant RhD-negative women carrying an RHD-positive fetus to prevent RhD immunization is a well-established practice in many countries. This study aimed to validate a platform for high-throughput, non-invasive, single-exon, fetal RHD genotyping consisting of automated DNA extraction and PCR set-up, and a novel system for electronic data transfer to the real-time PCR instrument.
View Article and Find Full Text PDFUnderstanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor-Seq (BCR-Seq) with oligo-tagged antigen baits.
View Article and Find Full Text PDF