Objectives: The locomotor and manipulative abilities of australopithecines are highly debated in the paleoanthropological context. Australopithecus afarensis and Australopithecus sediba likely engaged in arboreal locomotion and, especially the latter, in certain activities implying manipulation. Nevertheless, their degree of arboreality and the relevance of their manipulative skills remain unclear.
View Article and Find Full Text PDFOcclusal characteristics, fundamental to assess the presence of malocclusion, have been often unexplored in bioarchaeological analyses. This is largely due to the fragmented condition of the skeletal remains. By applying a method that considers dental and maxillary features useful to evaluate occlusion in ancient fragmentary material, the purpose of this work is to define the occlusal features and explore the causes of malocclusion in a mediaeval population from Mallorca.
View Article and Find Full Text PDFIpiutak (100BCE-500CE) and Tigara (1200 - 1700CE) are two populations from Point Hope, Alaska. As commonly observed in forager communities, it may be expected males and females to have been involved in markedly different daily activities. Nevertheless, activity-related sexual dimorphism in these populations has been scarcely studied.
View Article and Find Full Text PDFThe greatly diversified locomotor behaviors in the Hominoidea impose different mechanical requirements in the upper limb of each species. As forearm rotation has a major role in locomotion, the skeletal structures involved in this movement may display differences among taxa that reflect functional adaptations. To test this, we use a biomechanical model that quantifies the rotatory capacity of pronator teres (rotational efficiency) from skeletal measurements.
View Article and Find Full Text PDFBiomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle.
View Article and Find Full Text PDF