Introduction: Small membrane particles called extracellular vesicles (EVs) transport biologically active cargo between cells, providing intercellular communication. The clinical application of EVs is limited due to the lack of scalable and cost-effective approaches for their production and purification, as well as effective loading strategies.
Methods: Here we used EV mimetics produced by cell treatment with the actin-destabilizing agent cytochalasin B as an alternative to EVs for the delivery of therapeutic nucleic acids.
The delivery of therapeutic nucleic acids is a prospective method for the treatment of both inherited and acquired diseases including cancer. To achieve maximal delivery efficiency and selectivity, nucleic acids should be targeted to the cells of interest. In the case of cancer, such targeting may be provided through folate receptors overexpressed in many tumor cells.
View Article and Find Full Text PDFSome new polycationic amphiphiles containing a disulfide group were synthesized. Cationic liposomes formed from the compounds synthesized and a helper lipid 1,2-dioleoyl--glycero-3-phosphatidylethanolamine were not toxic for HEK293 and HeLa cells and were highly effective when delivering a fluorescently labeled oligodeoxyribonucleotide. The efficacy of plasmid DNA delivery depended on the cell line and the amphiphile structure, liposomes based on tetracationic amphiphiles being the most effective transfectants.
View Article and Find Full Text PDFGene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations.
View Article and Find Full Text PDF