Publications by authors named "P I E Arnott"

Chemistry is ideally placed to replicate biomolecular structures with tuneable building materials. Of particular interest are molecular nanopores, which transport cargo across membranes, as in DNA sequencing. Advanced nanopores control transport in response to triggers, but this cannot be easily replicated with biogenic proteins.

View Article and Find Full Text PDF

Chemistry is ideally placed to replicate biomolecular structures with tuneable building materials. Of particular interest are molecular nanopores, which transport cargo across membranes, as in DNA sequencing. Advanced nanopores control transport in response to triggers, but this cannot be easily replicated with biogenic proteins.

View Article and Find Full Text PDF

Nanopores are powerful nanodevices that puncture semifluid membranes to enable transport of molecular matter across biological or synthetic thin layers. Advanced nanopores featuring more complex functions such as ambient sensing and reversible channel opening are of considerable scientific and technological interest but challenging to achieve with classical building materials. Here we exploit the predictable assembly properties of DNA to form a multifunctional nanovalve that senses temperature for controlled channel opening and tunable transport.

View Article and Find Full Text PDF

Lipid-anchored DNA can attach functional cargo to bilayer membranes in DNA nanotechnology, synthetic biology, and cell biology research. To optimize DNA anchoring, an understanding of DNA-membrane interactions in terms of binding strength, extent, and structural dynamics is required. Here we use experiments and molecular dynamics (MD) simulations to determine how the membrane binding of cholesterol-modified DNA depends on electrostatic and steric factors involving the lipid headgroup charge, duplexed or single-stranded DNA, and the buffer composition.

View Article and Find Full Text PDF

Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.

View Article and Find Full Text PDF