Sulphate (SO), predominantly derived from sulphur (S)-bearing glacial sediments distributed widely across the Canadian Interior Plains, contributes to high groundwater salinity and can be detrimental to riparian and dry-land ecosystems, agricultural production, and water use. While previous researchers investigated SO distribution and dynamics in shallow groundwater at local scales (<1500 km), we examine SO occurrence in groundwater at larger scales, and to depths of ∼150 m, considering variations in geology, glacial history, climate, and geochemical and hydrogeological settings in the Canadian province of Alberta. Sulphate concentrations in groundwater vary considerably, with 15 % of 139,130 samples above the 500 mg/L Canadian drinking water aesthetic objective.
View Article and Find Full Text PDFHydrogen may be the most important electron donor available in the subsurface. Here we analyse the diversity, abundance and expression of hydrogenases in 5 proteomes, 25 metagenomes, and 265 amplicon datasets of groundwaters with diverse geochemistry. A total of 1545 new [NiFe]-hydrogenase gene sequences were recovered, which considerably increased the number of sequences (1999) in a widely used database.
View Article and Find Full Text PDFAround 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities.
View Article and Find Full Text PDFThe potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared.
View Article and Find Full Text PDFEnviron Sci Technol
November 2019
Aqueous geochemistry datasets from regional groundwater monitoring programs can be a major asset for environmental baseline assessment (EBA) in regions with development of natural gases from unconventional hydrocarbon resources. However, they usually do not include crucial parameters for EBA in areas of shale gas development such as methane concentrations. A logistic regression (LR) model was developed to predict the probability of methane occurrence in aquifers in Alberta (Canada).
View Article and Find Full Text PDF