Lamins A and C are intermediate filament proteins which polymerize into the nucleus to form the nuclear lamina network. The lamina is apposed to the inner nuclear membrane and functions in tethering chromatin to the nuclear envelope and in maintaining nuclear shape. We have recently characterized a globular domain that adopts an immunoglobulin fold in the carboxyl-terminal tail common to lamins A and C.
View Article and Find Full Text PDFLamins are nuclear intermediate filaments that, together with lamin-associated proteins, maintain nuclear shape and provide a structural support for chromosomes and replicating DNA. We have determined the solution structure of the human lamin A/C C-terminal globular domain which contains specific mutations causing four different heritable diseases. This domain encompasses residues 430-545 and adopts an Ig-like fold of type s.
View Article and Find Full Text PDFUteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to the cap domain of Xanthobacter autotrophicus haloalkane dehalogenase. We show here that UTG fold is adopted by several other cap domains within the alpha/beta hydrolase family, making it a well-suited "geode" structure allowing it to sequester various hydrophobic molecules.
View Article and Find Full Text PDF