Time-resolved extreme ultraviolet spectroscopy was used to investigate photodissociation within the iodobenzene C-band. The carbon-iodine bond of iodobenzene was photolyzed at 200 nm, and the ensuing dynamics were probed at 10.3 nm (120 eV) over a 4 ps range.
View Article and Find Full Text PDFWe report the generation of the fifth harmonic of Ti:sapphire, at 160 nm, with more than 4 µJ of pulse energy and a pulse length of 37 fs with a 1 kHz repetition rate. The vacuum ultraviolet pulses are produced using four-wave difference frequency mixing in a He-filled stretched hollow-core fiber, driven by a pump at 267 nm and seeded at 800 nm. Guided by simulations using Luna.
View Article and Find Full Text PDFWe present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation.
View Article and Find Full Text PDFC-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy.
View Article and Find Full Text PDFWe develop and experimentally demonstrate a methodology for a full molecular frame quantum tomography (MFQT) of dynamical polyatomic systems. We exemplify this approach through the complete characterization of an electronically nonadiabatic wave packet in ammonia (NH_{3}). The method exploits both energy and time-domain spectroscopic data, and yields the lab frame density matrix (LFDM) for the system, the elements of which are populations and coherences.
View Article and Find Full Text PDF