The two stork species that nest in Central Europe, and , have been repeatedly shown to host the digenetic trematode (Rudolphi, 1809) in their esophagus and muscular stomach. These host species differ in their habitat and food preferences, and the morphologic characters of isolates ex and are not identical. These differences led to a previous proposal of two subspecies, C Macko, 1960, and Macko, 1960.
View Article and Find Full Text PDFFeather bacterial load affects key avian life-history traits such as plumage condition, innate immunity, and reproductive success. Investigating the interplay between life-history traits and feather microbial load is critical for understanding mechanisms of host-microbiome interactions. We hypothesize that spatiotemporal variation associated with migration and molting, body size affecting colonizable body surface area, and preening intensity could shape feather bacterial load.
View Article and Find Full Text PDFBackground: High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal.
View Article and Find Full Text PDFThis is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin.
View Article and Find Full Text PDF