Cancer immunotherapy often depends on recognition of peptide epitopes by cytotoxic T lymphocytes (CTLs). The tumor microenvironment (TME) is enriched for peroxynitrite (PNT), a potent oxidant produced by infiltrating myeloid cells and some tumor cells. We demonstrate that PNT alters the profile of MHC class I bound peptides presented on tumor cells.
View Article and Find Full Text PDFThis article describes processing of protein samples using 1D SDS gels prior to protease digestion for proteomics workflows that subsequently utilize reversed-phase nanocapillary ultra-high-pressure liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS). The resulting LC-MS/MS data are used to identify peptides and thereby infer proteins present in samples ranging from simple mixtures to very complex proteomes. Bottom-up proteome studies usually involve quantitative comparisons across several or many samples.
View Article and Find Full Text PDFAnion exchanger 1 (AE1) is a critical transporter and the primary structural scaffold for large macromolecular complexes responsible for erythrocyte membrane flexibility and integrity. We used zero-length crosslinking and mass spectrometry to probe AE1 structures and interactions in intact erythrocyte membranes. An experimentally verified full-length model of AE1 dimers was developed by combining crosslink-defined distance constraints with homology modeling.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2002
Current methods for quantitatively comparing proteomes (protein profiling) have inadequate resolution and dynamic range for complex proteomes such as those from mammalian cells or tissues. More extensive profiling of complex proteomes would be obtained if the proteomes could be reproducibly divided into a moderate number of well-separated pools. But the utility of any prefractionation is dependent upon the resolution obtained because extensive cross contamination of many proteins among different pools would make quantitative comparisons impractical.
View Article and Find Full Text PDFThe number of unique protein species in proteomes from a single mammalian cell type is not well defined but is likely to be at least 10000-20000. Since standard-size two-dimensional gels typically resolve only about 1500 to 3000 spots, they merely analyze a small portion of these proteomes. In addition, all insoluble proteins and typically proteins > 100 kDa are seldom resolved on two-dimensional (2-D) gels.
View Article and Find Full Text PDF