Publications by authors named "P Hazemi"

Destruxins (Dtx) are secondary metabolites of the entomopathogenic fungus Metarhizium anisopliae. Recently, Dtx came into focus of interest as anticancer therapeutics. However, data on human and especially on cancer cells are fragmentary.

View Article and Find Full Text PDF

Pulmonary permeability oedema is a frequent complication in a number of life-threatening lung conditions, such as ALI and ARDS. Apart from ventilation strategies, no specific therapy yet exists for treatment of these potentially fatal illnesses. The oedema-reducing capacity of the lectin-like domain of TNF (TIP) and of synthetic peptides, mTIP and hTIP, which mimic the TIP domain of mouse and human TNF, have been demonstrated in various studies in rodents.

View Article and Find Full Text PDF

The pore-forming toxin Panton-Valentine leukocidin (PVL) is carried by community-acquired methicillin-resistant Staphylococcus aureus and associated with necrotizing pneumonia together with poor prognosis of infected patients. Although the cell-death-inducing properties of PVL have previously been examined, the pulmonary immune response to PVL is largely unknown. Using an unbiased transcriptional profiling approach, we show that PVL induces only 29 genes in mouse alveolar macrophages, which are associated with TLR signaling.

View Article and Find Full Text PDF

The amiloride-sensitive epithelial sodium channel (ENaC) plays a prominent role in sodium uptake from alveolar fluid and is the major component in alveolar fluid clearance in normal and diseased lungs. The lectin-like domain of TNF-α has been shown to activate amiloride-sensitive sodium uptake in type II alveolar epithelial cells. Therefore, several synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were synthesized and their ability to enhance sodium current through ENaC was studied in A549 cells with the patch clamp technique.

View Article and Find Full Text PDF

Type I IFN (IFN-I) signaling is detrimental to cells and mice infected with Listeria monocytogenes. In this study, we investigate the impact of IFN-I on the activity of listeriolysin O (LLO), a pore-forming toxin and virulence protein released by L. monocytogenes.

View Article and Find Full Text PDF