Nonadiabatic quantum-classical mapping approaches have significantly gained in popularity over the past several decades because they have acceptable accuracy while remaining numerically tractable even for large system sizes. In the recent few years, several novel mapping approaches have been developed that display higher accuracy than the traditional Ehrenfest method, linearized semiclassical initial value representation (LSC-IVR), and Poisson bracket mapping equation (PBME) approaches. While various benchmarks have already demonstrated the advantages and limitations of those methods, unified theoretical justifications of their short-time accuracy are still demanded.
View Article and Find Full Text PDFQuantum advantage in solving physical problems is still hard to assess due to hardware limitations. However, algorithms designed for quantum computers may engender transformative frameworks for modeling and simulating paradigmatically hard systems. Here, we show that the quadratic unconstrained binary optimization encoding enables tackling classical many-body systems that are challenging for conventional Monte Carlo.
View Article and Find Full Text PDFAll-to-all interacting, disordered quantum many-body models have a wide range of applications across disciplines, from spin glasses in condensed-matter physics over holographic duality in high-energy physics to annealing algorithms in quantum computing. Typically, these models are abstractions that do not find unambiguous physical realizations in nature. Here we realize an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift.
View Article and Find Full Text PDFThe electrochemical conversion of 5-Hydroxymethylfurfural, especially its reduction, is an attractive green production pathway for carbonaceous e-chemicals. We demonstrate the reduction of 5-Hydroxymethylfurfural to 5-Methylfurfurylalcohol under strongly alkaline reaction environments over oxide-derived Cu bimetallic electrocatalysts. We investigate whether and how the surface catalysis of the MO phases tune the catalytic selectivity of oxide-derived Cu with respect to the 2-electron hydrogenation to 2.
View Article and Find Full Text PDFDespite ground-breaking observations of supersolidity in spin-orbit-coupled Bose-Einstein condensates, until now the dynamics of the emerging spatially periodic density modulations has been vastly unexplored. Here, we demonstrate the nonrigidity of the density stripes in such a supersolid condensate and explore their dynamic behavior subject to spin perturbations. We show both analytically in infinite systems and numerically in the presence of a harmonic trap how spin waves affect the supersolid's density profile in the form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes.
View Article and Find Full Text PDF