Publications by authors named "P Hasty"

RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in RAD51 causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males.

View Article and Find Full Text PDF

Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion.

View Article and Find Full Text PDF

TREX2, a 3'-5' exonuclease, is a part of the DNA damage tolerance (DDT) pathway that stabilizes replication forks (RFs) by ubiquitinating PCNA along with the ubiquitin E3 ligase RAD18 and other DDT factors. Mismatch repair (MMR) corrects DNA polymerase errors, including base mismatches and slippage. Here we demonstrate that TREX2 deletion reduces mutations in cells upon exposure to genotoxins, including those that cause base lesions and DNA polymerase slippage.

View Article and Find Full Text PDF

During the repeated cycles of damage and repair in many muscle disorders, including Duchenne muscular dystrophy (DMD), the muscle stem cell (MuSC) pool becomes less efficient at responding to and repairing damage. The underlying mechanism of such stem cell dysfunction is not fully known. Here, we demonstrate that the distinct early telomere shortening of diseased MuSCs in both mice and young DMD patients is associated with aberrant NF-κB activation.

View Article and Find Full Text PDF

Three prime Repair Exonuclease 2 (Trex2) alters replication fork (RF) stability and mutation levels in cells defective for homologous recombination (HR). Trex2 has multiple functions that can either cause or supress RF instability in cells with different HR-defects. Why does Trex2 have such diverse effects on RF maintenance?

View Article and Find Full Text PDF