Publications by authors named "P Hage"

We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth.

View Article and Find Full Text PDF

When a neuron modulates its firing rate during a movement, we tend to assume that it is contributing to control of that movement. However, null space theory makes the counter-intuitive prediction that neurons often generate spikes not to cause behavior, but to prevent the effects that other neurons would have on behavior. What is missing is a direct way to test this theory in the brain.

View Article and Find Full Text PDF

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets.

View Article and Find Full Text PDF

Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target.

View Article and Find Full Text PDF

Our decisions are guided by how we perceive the value of an option, but this evaluation also affects how we move to acquire that option. Why should economic variables such as reward and effort alter the vigor of our movements? In theory, both the option that we choose and the vigor with which we move contribute to a measure of fitness in which the objective is to maximize rewards minus efforts, divided by time. To explore this idea, we engaged marmosets in a foraging task in which on each trial they decided whether to work by making saccades to visual targets, thus accumulating food, or to harvest by licking what they had earned.

View Article and Find Full Text PDF