Publications by authors named "P H van Gerwen"

Geometric deep learning models, which incorporate the relevant molecular symmetries within the neural network architecture, have considerably improved the accuracy and data efficiency of predictions of molecular properties. Building on this success, we introduce 3DReact, a geometric deep learning model to predict reaction properties from three-dimensional structures of reactants and products. We demonstrate that the invariant version of the model is sufficient for existing reaction data sets.

View Article and Find Full Text PDF

In recent years, there has been a surge of interest in predicting computed activation barriers, to enable the acceleration of the automated exploration of reaction networks. Consequently, various predictive approaches have emerged, ranging from graph-based models to methods based on the three-dimensional structure of reactants and products. In tandem, many representations have been developed to predict experimental targets, which may hold promise for barrier prediction as well.

View Article and Find Full Text PDF

A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is sometimes called "general". Despite their great utility in asymmetric synthesis, truly general catalysts are difficult or expensive to discover traditional high-throughput screening and are, therefore, rare. Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced substrate breadth.

View Article and Find Full Text PDF

In this account, we discuss the use of genetic algorithms in the inverse design process of homogeneous catalysts for chemical transformations. We describe the main components of evolutionary experiments, specifically the nature of the fitness function to optimize, the library of molecular fragments from which potential catalysts are assembled, and the settings of the genetic algorithm itself. While not exhaustive, this review summarizes the key challenges and characteristics of our own (i.

View Article and Find Full Text PDF

The automated construction of datasets has become increasingly relevant in computational chemistry. While transition-metal catalysis has greatly benefitted from bottom-up or top-down strategies for the curation of organometallic complexes libraries, the field of organocatalysis is mostly dominated by case-by-case studies, with a lack of transferable data-driven tools that facilitate both the exploration of a wider range of catalyst space and the optimization of reaction properties. For these reasons, we introduce OSCAR, a repository of 4000 experimentally derived organocatalysts along with their corresponding building blocks and combinatorially enriched structures.

View Article and Find Full Text PDF