Publications by authors named "P H Vazirani"

Using small molecules to induce readthrough of premature termination codons is a promising therapeutic approach to treating genetic diseases and cancers caused by nonsense mutations, as evidenced by the widespread use of ataluren to treat nonsense mutation Duchene muscular dystrophy. Herein we describe a series of novel guanidino quinazoline and pyrimidine scaffolds that induce readthrough in both HDQ-P1 mammary carcinoma cells and mdx myotubes. Linkage of basic, tertiary amines with aliphatic, hydrophobic substituents to the terminal guanidine nitrogen of these scaffolds led to significant potency increases.

View Article and Find Full Text PDF

Unlabelled: Beta-blockers are the cornerstone in management of heart failure and are well studied in Acute Coronary Syndromes (ACS). There is paucity of data of Bisoprolol in acute ICU setting in patients admitted with left ventricular systolic dysfunction (LVSD) with recent ACS, especially amongst Asian Indians. We evaluated the impact of Bisoprolol on Heart Rate (HR) and Left Ventricular Ejection Fraction (LVEF) along with metabolic indicators of HbA1C and lipid profile in post-ACS patients with LVSD at 1 year as compared to baseline.

View Article and Find Full Text PDF

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is the leading genetic cause of infant and toddler mortality, and there is currently no approved therapy available. SMA is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. These mutations or deletions result in low levels of functional SMN protein.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality.

View Article and Find Full Text PDF