Despite extensive research on the nucleation and growth of calcium oxalate (CaOx) crystals, there are still several challenges and unknowns that remain. In particular, the role of trace metal elements in the promotion or inhibition of CaOx crystals is not well understood. In the present study, graphene liquid cell transmission electron microscopy ( GLC TEM) was used to observe real-time, nanoscale transformations of CaOx crystals in the presence of nickel ions (Ni).
View Article and Find Full Text PDFSelf-assembled peptide fibrils have been used extensively to template the organization of metal nanoparticles in a one-dimensional (1D) array. It has been observed that the formation of the 1D arrays with a width of a single or few nanoparticles (viz. 20 nm diameter) is only possible if the templating fibers have comparable diameters (viz.
View Article and Find Full Text PDFThe multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity-based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner.
View Article and Find Full Text PDFWe use molecular dynamics simulations to show that the Venturi-Bernoulli effect can pump liquids at the nanoscale. In particular, we found that water flowing in an open reservoir close to a static substrate experiences a friction which converts its kinetic energy into breaking of hydrogen bonds. This water flowing under friction acquires a lower density, which can be used in pumping fluids positioned under a nanoporous substrate.
View Article and Find Full Text PDFIn cellular environments, metabolites, peptides, proteins, and other biomolecules can self-assemble into planar and fibrilar molecular crystals. We use atomistic molecular dynamics simulations to show that such biomolecular crystals coupled with low-dimensional materials can form stable hybrid superstructures. We discuss enantiopure and racemic TRP and PHE amino acid crystals adsorbed on or intercalated between graphene, phosphorene, and carbon nanotubes.
View Article and Find Full Text PDF