Publications by authors named "P H J van der Voort"

Background: Severe and critical COVID-19 is characterized by pulmonary viral infection with SARS-CoV-2 resulting in local and systemic inflammation. Dexamethasone (DEX) has been shown to improve outcomes in critically ill patients; however, its effect on tissue remodeling, particularly collagen turnover, remains unclear. This study investigated the association between circulating extracellular matrix (ECM) remodeling neo-epitopes and COVID-19 severity, their relationship with mortality, and the effect of DEX on these markers.

View Article and Find Full Text PDF

Background: Initial clinical studies of pulsed field ablation (PFA) to treat atrial fibrillation (AF) indicated a >90% durability rate of pulmonary vein isolation (PVI). However, these studies were largely conducted in single centers and involved a limited number of operators. The electrophysiological findings and outcomes in patients undergoing repeat ablation after an initial PF ablation for AF are incompletely understood.

View Article and Find Full Text PDF

Objective: To describe the 12-month mortality of Dutch COVID-19 intensive care unit patients, the total COVID-19 population and various subgroups on the basis of the number of comorbidities, age, sex, mechanical ventilation, and vasoactive medication use.

Methods: We included all patients admitted with COVID-19 between March 1, 2020, and March 29, 2022, from the Dutch National Intensive Care (NICE) database. The crude 12-month mortality rate is presented via Kaplan-Meier survival curves for each patient subgroup.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated the benefit of early ablation in preventing the progression of atrial fibrillation (AF). Clinical practice has reflected this shift in AF management and no longer requires patients to fail antiarrhythmic drugs (AADs) before receiving ablation. However, there is limited evidence on outcomes with pulsed field ablation (PFA) as a first-line therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Covalent organic frameworks (COFs) can be customized for photocatalysis, but their effectiveness is hampered by rapid charge recombination.
  • Researchers have developed a new design strategy that introduces trap states in COFs to stabilize long-lived charge-separated excitons, enhancing their photocatalytic activity.
  • A specific COF modification using cationic acridinium functionality allows for efficient chemical reactions with high yields, while the COF’s large mesopores facilitate better mass flow and significantly improve catalytic performance compared to existing technologies.
View Article and Find Full Text PDF