Purpose: Focal cortical dysplasias (FCDs) are a leading cause of drug-resistant epilepsy. Early detection and resection of FCDs have favorable prognostic implications for postoperative seizure freedom. Despite advancements in imaging methods, FCD detection remains challenging.
View Article and Find Full Text PDFThere is active debate regarding how GABAergic function changes during seizure initiation and propagation, and whether interneuronal activity drives or impedes the pathophysiology. Here, we track cell-type specific firing during spontaneous human seizures to identify neocortical mechanisms of inhibitory failure. Fast-spiking interneuron activity was maximal over 1 second before equivalent excitatory increases, and showed transitions to out-of-phase firing prior to local tissue becoming incorporated into the seizure-driving territory.
View Article and Find Full Text PDFCellular sulfation pathways rely on the activated sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In humans, PAPS is exclusively provided by the two PAPS synthases PAPSS1 and PAPSS2. Mutations found in the PAPSS2 gene result in severe disease states such as bone dysplasia, androgen excess and polycystic ovary syndrome.
View Article and Find Full Text PDFInterictal epileptiform discharges (IEDs), also known as interictal spikes, are large intermittent electrophysiological events observed between seizures in patients with epilepsy. Although they occur far more often than seizures, IEDs are less studied, and their relationship to seizures remains unclear. To better understand this relationship, we examined multi-day recordings of microelectrode arrays implanted in human epilepsy patients, allowing us to precisely observe the spatiotemporal propagation of IEDs, spontaneous seizures, and how they relate.
View Article and Find Full Text PDF