Publications by authors named "P H Gires"

Self-organization of cells into higher-order structures is key for multicellular organisms, for example via repetitive replication of template-like founder cells or syncytial energids. Yet, very similar spatial arrangements of cell-like compartments ('protocells') are also seen in a minimal model system of Xenopus egg extracts in the absence of template structures and chromatin, with dynamic microtubule assemblies driving the self-organization process. Quantifying geometrical features over time, we show here that protocell patterns are highly organized with a spatial arrangement and coarsening dynamics similar to that of two-dimensional foams but without the long-range ordering expected for hexagonal patterns.

View Article and Find Full Text PDF

Mixing of reactants in microdroplets predominantly relies on diffusional motion due to small Reynolds numbers and the resulting absence of turbulent flows. Enhancing diffusion in microdroplets by an auxiliary noise source is therefore a topical problem. Here we report on how the diffusional motion of tracer beads is enhanced upon agitating the surrounding aqueous fluid with miniaturized magnetic stir bars that are compatible with microdroplets and microfluidic devices.

View Article and Find Full Text PDF

Controlled stirring of tiny volumes of aqueous fluids is of particular importance in the life sciences, e.g. in the context of microfluidic and lab-on-chip applications.

View Article and Find Full Text PDF

By means of ultrathin silicon membranes excited in the low ultrasound range, we show for the first time that it is possible to form two-dimensional Chladni patterns of microbeads in liquid. Unlike the well-known effect in a gaseous environment at the macroscale, where gravity effects are generally dominant, leading particles towards the nodal regions of displacement, we show that the combined effects of an ultrathin plate excited at low frequency (yielding to subsonic waves) together with reduced gravity (arising from buoyancy) will enhance the importance of microstreaming in the Chladni problem. Here, we report that for micrometric beads larger than the inner streaming layer, the microscale streaming in the vicinity of the plate tends to gather particles in antinodal regions of vibrations yielding to patterns in good agreement with the predicted modes for a liquid-loaded plate.

View Article and Find Full Text PDF

Capsules consist of droplets enclosed by a membrane with shear resistant properties especially when fabricated by interfacial cross-linking. In many applications, the protection and release of the internal medium need to be strictly controlled. It is possible to tune the membrane mechanical properties by changing the physico-chemical conditions of the fabrication process, but a good control of the production requires their characterization, which is a scientific challenge, since the objects are a few tens of microns in size at most.

View Article and Find Full Text PDF