An external focus of attention, enhanced expectancies, and autonomy support (i.e., OPTIMAL factors) are key factors to optimise motor performance and uncover latent movement capabilities.
View Article and Find Full Text PDFResidual errors are used as a goodness-of-fit metric of the musculoskeletal model to the experimental data in multibody kinematic optimisation (MKO) analyses. Despite many studies reporting residual errors as a criterion for evaluating their proposed algorithm or model, the validity of residual errors as a performance metric has been questioned, with studies indicating a non-causal relationship between residual errors and computed joint angles. Additionally, the impact of different parameters of an MKO pipeline on residual errors has not been analysed.
View Article and Find Full Text PDFBackground: Radiopharmaceutical therapy (RPT) uses radionuclides that decay via one of three therapeutically relevant decay modes (alpha, beta, and internal conversion (IC) / Auger electron (AE) emission) to deliver short range, highly damaging radiation inside of diseased cells, maintaining localized dose distribution and sparing healthy cells. Antimony-119 (Sb, t = 38.19 h, EC = 100%) is one such IC/AE emitting radionuclide, previously limited to in silico computational investigation due to barriers in production, chemical separation, and chelation.
View Article and Find Full Text PDFObjective: Clinical research networks facilitate collaborative research, but data sharing remains a common barrier.
Materials And Methods: The TriNetX platform provides real-time access to electronic health record (EHR)-derived, anonymized data from 173 healthcare organizations (HCOs) and tools for queries and analysis. In 2022, 4 pediatric HCOs worked with TriNetX leadership to found the Pediatric Collaboratory Network (PCN), facilitated via a multi-institutional data-use agreement (DUA).
Radiopharmaceutical therapy (RPT) is evolving as a promising strategy for treating cancer. As interest grows in short-range particles, like Auger electrons, understanding the dose-response relationship at the deoxyribonucleic acid (DNA) level has become essential. In this study, we used the Geant4-DNA toolkit to evaluate DNA damage caused by the Auger-electron-emitting isotope I-125.
View Article and Find Full Text PDF