Publications by authors named "P H Backx"

Mitochondrial creatine kinase (mtCK) regulates the "fast" export of phosphocreatine to support cytoplasmic phosphorylation of ADP to ATP which is more rapid than direct ATP export. Such "creatine-dependent" phosphate shuttling is attenuated in several muscles, including the heart, of the D2.mdx mouse model of Duchenne muscular dystrophy at only 4 weeks of age.

View Article and Find Full Text PDF

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1 macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day ) in 7-week-old male CD1 mice.

View Article and Find Full Text PDF

A comprehensive view of the role of NLRP3/caspase-1/GSDMD-mediated pyroptosis in pressure overload cardiac hypertrophy is presented in this study. Furthermore, mitigation of NLRP3 deficiency-induced pyroptosis confers cardioprotection against pressure overload through activation of TAK1, whereas this salutary effect is abolished by inhibition of TAK1 activity, highlighting a previously unrecognized reciprocally regulatory role of NLRP3-TAK1 governing inflammation-induced cell death and hypertrophic growth. Translationally, this study advocates strategies based on inflammation-induced cell death might be exploited therapeutically in other inflammatory and mechanical overload disorders, such as myocardial infarction and mitral regurgitation.

View Article and Find Full Text PDF

While the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on cardiac ischemia-reperfusion (IR) injury have been previously reported, limited data are available regarding how these fatty acids affect membrane receptors and their downstream signaling following IR injury. We aimed to identify potential receptors activated by n-3 PUFAs in IR hearts to understand the regulatory mechanisms of these receptors. We used mice, which naturally have elevated levels of n-3 PUFAs, and C57BL/6J mice as a control group to create a myocardial IR injury model through Langendorff perfusion.

View Article and Find Full Text PDF