Recent experiments with metallic nanowires devices seem to indicate that superconductivity can be controlled by the application of electric fields. In such experiments, critical currents are tuned and eventually suppressed by relatively small voltages applied to nearby gate electrodes, at odds with current understanding of electrostatic screening in metals. We investigate the impact of gate voltages on superconductivity in similar metal nanowires.
View Article and Find Full Text PDFWe experimentally demonstrate the first inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5×10(15) cm(-3), 3 orders of magnitude lower than has previously been detected via direct inductive detection.
View Article and Find Full Text PDFOver the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2009
Fluorine relaxation profiles for a BaF(2) single crystal collected at several temperatures have been analyzed in terms of essentially different motional models: free rotational and free translational diffusion. The analysis has been performed to critically review the sensitivity of field dependent relaxation studies to mechanisms of molecular motions. The tested motional models do not realistically describe the fluorine dynamics within the crystal lattice.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2009
In this paper physical mechanisms and theoretical treatments of polarization transfer and field-dependent relaxation in solid state systems, containing mutually coupled spins of spin quantum numbers I=12 (spins 12) and S1 (quadrupolar spins), are presented. First, theoretical descriptions of these effects are given in detail for an illustrative, simple system. Next, it is shown how to generalize the theories to much more complex spin systems.
View Article and Find Full Text PDF