We demonstrate numerically how a spin wave (SW) beam obliquely incident on the edge of a thin film placed below a ferromagnetic stripe can excite leaky SWs guided along the stripe. During propagation, leaky waves emit energy back into the layer in the form of plane waves and several laterally shifted parallel SW beams. This resonance excitation, combined with interference effects of the reflected and re-emitted waves, results in the magnonic Wood's anomaly and a significant increase of the Goos-Hänchen shift magnitude.
View Article and Find Full Text PDFTexture-based magnonics focuses on the utilization of spin waves in magnetization textures to process information. Using micromagnetic simulations, we study how (1) the dynamic magnetic susceptibility, (2) dispersion relations, and (3) the equilibrium magnetic configurations in periodic magnetization textures in a ultrathin ferromagnetic film in remanence depend on the values of the Dzyaloshinskii-Moriya interaction and the perpendicular magnetocrystalline anisotropy. We observe that for large Dzyaloshinskii-Moriya interaction values, spin spirals with periods of tens of nanometers are the preferred state; for small Dzyaloshinskii-Moriya interaction values and large anisotropies, stripe domain patterns with over a thousand times larger period are preferable.
View Article and Find Full Text PDFReconfigurable magnetization textures offer control of spin waves with promising properties for future low-power beyond-CMOS systems. However, materials with perpendicular magnetic anisotropy (PMA) suitable for stable magnetization-texture formation are characterized by high damping, which limits their applicability in magnonic devices. Here, we propose to overcome this limitation by using hybrid structures, i.
View Article and Find Full Text PDFSubwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires-Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film.
View Article and Find Full Text PDFThe concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems.
View Article and Find Full Text PDF