Recent attempts to improve solar cell performance by increasing their spectral absorption interval incorporate up-converting fluorescent nanocrystals on the structure. These nanocrystals absorb low energy light and emit higher energy photons that can then be captured by the solar cell active layer. However, this process is very inefficient and it needs to be enhanced by different strategies.
View Article and Find Full Text PDFFluorescence enhancement effects have many potential applications in the domain of biochemical sensors and optoelectronic devices. Here, the emission properties of up-converting nanocrystals near nanostructures that support surface plasmon resonances have been investigated. Gold nanodisks of various diameters were illuminated in the near-infrared (λ = 975 nm) and a single fluorescent nanocrystal glued at the end of an atomic force microscope tip was scanned around them.
View Article and Find Full Text PDFMotivated by the role of copper ions in biological processes the aim of this study was to elucidate the impact of copper ions bound to hydroxyapatite on L-serine (L-Ser) and O-phospho-L-serine (O-Ph-L-Ser) adsorption at different acidity of aqueous solutions. The adsorption phenomenon was studied by FTIR, UV, and AA spectroscopy, XRD and thermal analysis methods together with the evolved gases analysis taking into consideration the ionic state of the amino acids as well as the apatite surface state, which are tightly correlated with the solution pH. In acidic solution, the main process involves apatite dissolution releasing calcium and copper ions.
View Article and Find Full Text PDFThe incorporation site of Er dopants inserted at high and low concentration (respectively 5 and 0.5 mol%) in nanoparticles of CaF is studied by x-ray absorption spectroscopy (XAS) at the Er L edge. The experimental data are compared with the results of structural modeling based on density functional theory (DFT).
View Article and Find Full Text PDF