Publications by authors named "P Gratia"

Oxidative polymerization of nickel(II) 5,15-diphenyl porphyrin and nickel(II) 5,15-bis(di-3,5-tert-butylphenyl) porphyrin by oxidative chemical vapor deposition (oCVD) yields multiply fused porphyrin oligomers in thin film form. The oCVD technique enables one-step formation, deposition, and p-doping of conjugated poly(porphyrins) coatings without solvents or post-treatments. The decisive reactions and side reactions during the oCVD process are shown by high-resolution mass spectrometry.

View Article and Find Full Text PDF

Molecularly engineered novel dopant-free hole-transporting materials for perovskite solar cells (PSCs) combined with mixed-perovskite (FAPbI ) (MAPbBr ) (MA: CH NH , FA: NH=CHNH ) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated.

View Article and Find Full Text PDF

Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI)(MAPbBr) is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices.

View Article and Find Full Text PDF

Donor-π-bridge-donor type oligomers (D-π-D) have been studied intensively as active materials for organic optoelectronic devices. In this study, we introduce three new D-π-D type organic semiconductors incorporating thiophene or thienothiophene with two electron-rich TPA units, which can be easily synthesized from commercially available materials. A thorough comparison of their optoelectronic and structural properties was conducted, revealing the strong influence of the extent of longitudinal π-bridge conjugation on both the solid structure of the organic semiconductive materials and their photovoltaic performance when applied as hole transporting materials (HTM) in perovskite solar cells.

View Article and Find Full Text PDF

Triarylamine-based polymers with different functional groups were synthetized as hole-transport materials (HTMs) for perovskite solar cells (PSCs). The novel materials enabled efficient PSCs without the use of chemical doping (or additives) to enhance charge transport. Devices employing poly(triarylamine) with methylphenylethenyl functional groups (V873) showed a power conversion efficiency of 12.

View Article and Find Full Text PDF