The development of a capnometry wristband is of great interest for monitoring patients at home. We consider a new architecture in which a non-dispersive infrared (NDIR) optical measurement is located close to the skin surface and is combined with an open chamber principle with a continuous circulation of air flow in the collection cell. We propose a model for the temporal dynamics of the carbon dioxide exchange between the blood and the gas channel inside the device.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
The development of wearable devices for healthcare monitoring is of primary interest, in particular for homecare applications. But it is challenging to develop an evaluation framework to test and optimize such a device by following a non-invasive protocol. As well established reference devices do exist for capnometry, we propose a protocol to evaluate and compare the performance of the transcutaneous carbon dioxide monitoring wristband that we develop.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
We introduce an innovative wristband wireless device based on a dual wavelength NDIR optical measurement and an optimized thermo-fluidic channel to improve the extraction of the carbon dioxide gas from the blood within the heated skin region. We describe a signal processing model combining an innovative linear quadratic model of the optical measurement and a fluidic model. The evaluation is achieved using a cardiopulmonary exercise test (CPET).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
In medical applications, quantitative analysis of breath may open new prospects for diagnosis or for patient monitoring. To detect acetone, a breath biomarker for diabetes, we use a single metal-oxide (MOX) gas sensor working in a dual temperature mode. We propose a linear-quadratic model to describe the mixing model mapping gas concentrations to MOX sensor responses.
View Article and Find Full Text PDFThe aim of our work is to quantify two gases (acetone and ethanol) diluted in an air buffer using only a single metal oxide (MOX) sensor. We took advantage of the low selectivity of the MOX sensor, exploiting a dual-temperature mode. Working at two temperatures of the MOX sensitive layer allowed us to obtain diversity in the measures.
View Article and Find Full Text PDF