Publications by authors named "P Goslawski"

We report on a novel multi-color method of X-ray spectroscopy at a Synchrotron radiation source that uses two simultaneously filled electron orbits in an electron storage ring to generate multiple soft or tender X-ray beams of different wavelength. To establish the second orbit, we use nonlinear beam dynamics in the so called TRIBs-transverse resonance island buckets-mode of the BESSY II storage ring, where a second electron orbit winds around the regular one leading to transversely separated source points. X-ray beams of multiple colors are generated by imaging the individual source points via different pathways through a monochromator.

View Article and Find Full Text PDF

We demonstrate an experimental methodology for measuring the halo distribution of special bunches in a storage ring using a synchrotron radiation coronagraph composed of the objective lens and a re-diffraction system. The optimum parameters for the coronagraph were investigated within several boundary conditions by applying a paraxial Fourier transformation sequentially from one plane to the next plane. In addition, the effect of Mie-scattering was estimated for different polishing-quality lenses and it shows that a high-quality lens is capable of achieving a dynamic range of the monitor of about 10.

View Article and Find Full Text PDF

The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate.

View Article and Find Full Text PDF

Temporally short X-ray pulses are an indispensable tool for the study of electron transitions close to the Fermi energy and structural changes in molecules undergoing chemical reactions which take place on a time-scale of hundreds of femtoseconds. The time resolution of experiments at 3 generation light sources which produce intense synchrotron radiation is limited fundamentally by the electron-bunch length in the range of tens of picoseconds. Here we propose a new scheme for the generation of intense and coherent sub-femtoseconds soft X-ray pulses in storage rings by applying the Echo-Enabled Harmonic Generation (EEHG) method.

View Article and Find Full Text PDF

At the Metrology Light Source (MLS), the compact electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) with a circumference of 48 m, a specific operation mode with two stable closed orbits for stored electrons was realized by transverse resonance island buckets. One of these orbits is closing only after three turns. In combination with single-bunch operation, the new mode was applied for electron time-of-flight spectroscopy with an interval of the synchrotron radiation pulses which is three times the revolution period at the MLS of 160 ns.

View Article and Find Full Text PDF