The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities.
View Article and Find Full Text PDFAs the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources.
View Article and Find Full Text PDFBiochim Biophys Acta
June 1988
Ca2+ transport was investigated in basolateral plasma membranes (BLM) isolated from kidney cortex of the Milan strain of genetically hypertensive rats (MHS) and their normotensive controls (MNS) during a pre-hypertensive stage (age 3-4 weeks). It was found that the Vmax of ATP-dependent Ca2+ transport (in the presence of calmodulin) was about 16% lower in MHS than in control rats. In membranes from MNS rats which had been isolated in the presence of EGTA, the ATP-dependent Ca2+ transport showed a hyperbolic Ca2+ concentration dependence, a high Km (Ca2+) and a low Vmax; upon addition of exogenous calmodulin, the kinetics became sigmoidal, the Km (Ca2+) was decreased and the Vmax was increased.
View Article and Find Full Text PDFATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.
View Article and Find Full Text PDF