We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope's performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal BiTe.
View Article and Find Full Text PDFSpatial disorder has been shown to drive two-dimensional (2D) superconductors to an insulating phase through a superconductor-insulator transition (SIT). Numerical calculations predict that with increasing disorder, emergent electronic granularity is expected in these materials-a phenomenon where superconducting (SC) domains on the scale of the material's coherence length are embedded in an insulating matrix and coherently coupled by Josephson tunneling. Here, we present spatially resolved scanning tunneling spectroscopy (STS) measurements of the three-dimensional (3D) superconductor BaPb Bi O (BPBO), which surprisingly demonstrate three key signatures of emergent electronic granularity, having only been previously conjectured and observed in 2D thin-film systems.
View Article and Find Full Text PDFWe present a combined experimental and theoretical study of the evolution of the Fermi surface of the anomalous superconductor Pb_{1-x}Tl_{x}Te as a function of thallium concentration, drawing on a combination of magnetotransport measurements (Shubnikov-de Haas oscillations and the Hall coefficient), angle resolved photoemission spectroscopy, and density functional theory calculations of the electronic structure. Our results indicate that for Tl concentrations beyond a critical value, the Fermi energy coincides with resonant impurity states in Pb_{1-x}Tl_{x}Te, and we rule out the presence of an additional valence band maximum at the Fermi energy. A comparison to nonsuperconducting Pb_{1-x}Na_{x}Te implies that the presence of these impurity states at the Fermi energy provides the enhanced pairing interaction and thus also the anomalously high temperature superconductivity in this material.
View Article and Find Full Text PDFThe anomalous metallic state in the high-temperature superconducting cuprates is masked by superconductivity near a quantum critical point. Applying high magnetic fields to suppress superconductivity has enabled detailed studies of the normal state, yet the direct effect of strong magnetic fields on the metallic state is poorly understood. We report the high-field magnetoresistance of thin-film La Sr CuO cuprate in the vicinity of the critical doping, 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Superconductivity often emerges in proximity of other symmetry-breaking ground states, such as antiferromagnetism or charge-density-wave (CDW) order. However, the subtle interrelation of these phases remains poorly understood, and in some cases even the existence of short-range correlations for superconducting compositions is uncertain. In such circumstances, ultrafast experiments can provide new insights by tracking the relaxation kinetics following excitation at frequencies related to the broken-symmetry state.
View Article and Find Full Text PDF