This study investigates the adsorption behaviour of lipase at silica/water and oil/water interfaces by means of molecular dynamics simulations. The findings reveal distinct adsorption orientations and structural differences that can be related to different enzymatic activities and selectivities. At the silica/water interface, lipase adsorbs with the LID region facing the solvent, in a configuration that is not fully open, but still grants access to its catalytic triad, as shown by tunnel calculations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hypothesis: Disulfide bonds in proteins are strong chemical bonds forming the secondary and tertiary structure like in the dairy protein β-lactoglobulin. We hypothesize that the partial or complete removal of disulfide bonds affects the structural rearrangement of proteins caused by intra- and intermolecular interactions that in turn define the interfacial activity of proteins at oil/water interfaces. The experimental and numerical investigations contribute to the mechanistic understanding of the structure-function relationship, especially for the interfacial adsorption behavior of proteins.
View Article and Find Full Text PDFProtein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization).
View Article and Find Full Text PDFHypothesis: High hydrostatic pressure treatment causes structural changes in interfacial-active β-lactoglobulin (β-lg). We hypothesized that the pressure-induced structural changes affect the intra- and intermolecular interactions which determine the interfacial activity of β-lg. The conducted experimental and numerical investigations could contribute to the mechanistic understanding of the adsorption behavior of proteins in food-related emulsions.
View Article and Find Full Text PDF