Aim Of The Study: This analysis provides a full national overview of genetic research dossiers pertaining to clinical and nonclinical trials, and to further-use research projects submitted for approval to ethics committees in Switzerland in 2018. It addresses the research type, medical field, number of individuals or datasets involved, diagnostic laboratories and data privacy, as well as the procedures foreseen for obtaining consent, communicating results, and dealing with excess data and incidental findings. The analysis results should constitute a basis for future discussions surrounding regulatory and ethical procedures that govern genetic investigations in biomedical research in Switzerland.
View Article and Find Full Text PDFBackground: To ensure ethical oversight, researchers wanting to conduct “research” involving human beings are typically required to obtain prior approval from an independent ethics committee. However, it can sometimes be unclear if a project needs to be submitted for ethics approval. Swiss researchers can contact research ethics committees via a “jurisdictional inquiry” for clarification whether a project needs to be submitted for ethics approval.
View Article and Find Full Text PDFEscherichia coli beta-lactamase, alone or as a complex with GroEL at 48 degreesC, was partially digested with trypsin, endoproteinase Glu-C, or thermolysin. Peptides were analyzed by matrix-assisted laser desorption and ionization mass spectrometry and aligned with the known sequence. From the protease cleavage sites which become protected upon binding and those which become newly accessible, a model of the complex is proposed in which the carboxy-terminal helix has melted, two loops form the binding interface and the large beta-sheet become partially uncovered by the slight dislocation of other structural elements.
View Article and Find Full Text PDFThe structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions.
View Article and Find Full Text PDF