Publications by authors named "P Genoves"

Sympathetic nervous system (SNS), endothelin 1 (ET-1) and angiotensin II (Ang II) are involved in the pathophysiology of acute myocardial infarction (AMI). Valproic acid (VPA) is under study for the treatment against AMI due to its beneficial cardiac effects. However, the vascular effects of VPA on the activation of the SNS, ET-1 and Ang II after AMI are not fully studied.

View Article and Find Full Text PDF

Levamisole is an anthelmintic drug restricted to veterinary use but is currently detected as the most widely used cocaine cutting agent in European countries. Levamisole-adulterated cocaine has been linked to acute kidney injury, marked by a decrease in glomerular filtration rate, which involves reduced renal blood flow, but data on the alteration of renovascular response produced by levamisole are scarce. Renal arteries were isolated from healthy rabbits and used for isometric tension recording in organ baths and protein analysis.

View Article and Find Full Text PDF

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day).

View Article and Find Full Text PDF

Background: Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) has been linked to a higher prevalence of cardiac arrhythmias, the most frequent being atrial fibrillation, but the mechanisms are not well understood. One possible underlying mechanism may be an abnormal modulation of autonomic nervous system activity, which can be quantified by analysing heart rate variability (HRV). Our aim was to investigate the modifications of long-term HRV in an experimental model of diet-induced MetS to identify the early changes in HRV and the link between autonomic dysregulation and MetS components.

View Article and Find Full Text PDF