We report an improved measurement of the free neutron lifetime τ_{n} using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38×10^{6} surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ_{n} from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ_{n} measurements and by performing a global likelihood fit to all data while self-consistently incorporating the β-decay lifetime.
View Article and Find Full Text PDFWe report on first experimental tests of a neutron magnetic spin resonator at a very cold neutron beam port of the high flux reactor at the ILL Grenoble. When placed between two supermirror neutron polarizers and operated in a pulsed traveling-wave mode it allows to decouple its time- and wavelength-resolution and can therefore be used simultaneously as electronically tunable monochromator and fast beam chopper. As a first 'real' scientific application we intend its implementation in the PERC (p roton and e lectron r adiation c hannel) project related to high-precision experiments in neutron beta decay.
View Article and Find Full Text PDFWe present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes.
View Article and Find Full Text PDFThis paper reports imaging of objects with slow neutrons, specifically very cold neutrons and cold neutrons, at Institut Laue Langevin, using novel, permanent magnet (NdFeB) compound refractive lenses (MCRL) with a large 2.5 cm bore diameter. The MCRL focuses and images spin-up neutrons and defocuses spin-down neutrons via a large, radial magnetic field gradient.
View Article and Find Full Text PDFWe investigate the applicability of polymer-ionic liquid composites as optical elements for light, as well as for slow neutrons. The gratings are recorded using two-beam mixing and are characterized experimentally based on their diffraction properties. We produced a set of samples differing in their thickness, ranging from 10 m - 100 m .
View Article and Find Full Text PDF