The adhesion strength of a bacterial strain on a substrate influences colonization and biofilm development, so the biomolecular analysis of this interaction is a step that allows insights into the development of antifouling surfaces. As peri-implantitis is the main cause of failure of implant-supported oral rehabilitations and the dental literature presents gaps in the atomic bacteria/surface interaction, this study aimed to correlate the qualitative variation of roughness, wettability, chemical composition, and electrical potential of Ti-6Al-4V and Ti-35Nb-7Zr-5Ta (TNZT) disks obtained by machining (M) and additive manufacturing (AM) on the colonization and adhesion strength of S. aureus quantified by atomic force microscopy (AFM).
View Article and Find Full Text PDFChemical Short-Range Order (CSRO) has attracted recent attention from many researchers, creating intense debates about its impact on material properties. The challenges lie in confirming and quantifying CSRO, as its detection proves exceptionally demanding, contributing to conflicting data in the literature regarding its true effects on mechanical properties. Our work uses high-precision calorimetric data to unambiguously prove the existence and, coupled with atomistic simulations, quantify the type of CSRO.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2013
The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.
View Article and Find Full Text PDF