Publications by authors named "P Gargan"

Patterns of feeding and growth of Atlantic salmon Salmo salar L. in the marine environment are critical to understanding how observed declines in recruitment may reflect warming or other oceanic drivers. The isotopic composition of scales can provide insight into differences in marine feeding location and possibly temperature regime.

View Article and Find Full Text PDF

Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.

View Article and Find Full Text PDF

The occurrence of alternative morphs within populations is common, but the underlying molecular mechanisms remain poorly understood. Many animals, for example, exhibit facultative migration, where two or more alternative migratory tactics (AMTs) coexist within populations. In certain salmonid species, some individuals remain in natal rivers all their lives, while others (in particular, females) migrate to sea for a period of marine growth.

View Article and Find Full Text PDF

Determining the mechanisms driving range-wide reductions in Atlantic salmon marine survival is hindered by an insufficient understanding of their oceanic ecology and distribution. We attached 204 pop-up satellite archival tags to post-spawned salmon when they migrated to the ocean from seven European areas and maiden North American salmon captured at sea at West Greenland. Individuals migrated further north and east than previously reported and displayed increased diving activity near oceanographic fronts, emphasizing the importance of these regions as feeding areas.

View Article and Find Full Text PDF

Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility.

View Article and Find Full Text PDF