Publications by authors named "P Gangl"

Multi-material design optimization problems can, after discretization, be solved by the iterative solution of simpler sub-problems which approximate the original problem at an expansion point to first order. In particular, models constructed from convex separable first order approximations have a long and successful tradition in the design optimization community and have led to powerful optimization tools like the prominently used method of moving asymptotes (MMA). In this paper, we introduce several new separable approximations to a model problem and examine them in terms of accuracy and fast evaluation.

View Article and Find Full Text PDF

We introduce a unified sensitivity concept for shape and topological perturbations and perform the sensitivity analysis for a discretized PDE-constrained design optimization problem in two space dimensions. We assume that the design is represented by a piecewise linear and globally continuous level set function on a fixed finite element mesh and relate perturbations of the level set function to perturbations of the shape or topology of the corresponding design. We illustrate the sensitivity analysis for a problem that is constrained by a reaction-diffusion equation and draw connections between our discrete sensitivities and the well-established continuous concepts of shape and topological derivatives.

View Article and Find Full Text PDF

Unlabelled: In this paper, we present a framework for automated shape differentiation in the finite element software NGSolve. Our approach combines the mathematical Lagrangian approach for differentiating PDE-constrained shape functions with the automated differentiation capabilities of NGSolve. The user can decide which degree of automatisation is required, thus allowing for either a more custom-like or black-box-like behaviour of the software.

View Article and Find Full Text PDF