The formation of biomolecular condensates contributes to intracellular compartmentalization and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.
View Article and Find Full Text PDFBackground/objectives: Circadian rhythm (CR) influences various physiological functions, including physical and cognitive performance, which fluctuate throughout the day. The present study aimed to investigate the combined and separate effects of CR and physical fatigue on cognitive and physical performance.
Methods: A sample of 18 amateur athletes was subjected to a series of tests at three different times of the day: morning, afternoon, and evening.
Transport through the nuclear pore complex (NPC) relies on intrinsically disordered FG-nucleoporins (FG-Nups) forming a selective barrier. Away from the NPC, FG-Nups readily form condensates and aggregates, and we address how this behavior is surveilled in cells. FG-Nups, including Nsp1, together with the nuclear transport receptor Kap95, form a native daughter cell-specific cytosolic condensate in yeast.
View Article and Find Full Text PDFAs the demand for Octopus maya grows, sustainable farming practices become essential to prevent overexploitation, so that farming can be developed as a sustainable alternative to traditional fishing. Understanding the digestive dynamics of the octopus is essential for devising optimal dietary formulations in aquaculture. Despite the progress in understanding cephalopod digestion, little is known about the specific functioning of the digestive enzymes responsible for breaking down protein substrates.
View Article and Find Full Text PDF