The development of novel improved varieties adapted to unstable environmental conditions is possible through the genetic diversity of breeding materials. Potato is among the most important food crops worldwide, however, there are still significant hindrances to breeding gains attributed to its autotetraploid and highly heterozygous genome. Bacterial wilt caused by the species complex (RSSC) is an important disease affecting potato among many economically important crops worldwide.
View Article and Find Full Text PDFIntroducing new grass species into cultivation has long been proposed as beneficial to increase the sustainability and diversity of productive systems. However, wild species with potential tend to show high seed dormancy, causing slow, poor, and unsynchronized seedling emergence. Meanwhile, domesticated species, such as cereals, show lower seed dormancy, facilitating their successful establishment.
View Article and Find Full Text PDFCrop wild relatives are gaining increasing attention. Their use in plant breeding is essential to broaden the genetic basis of crops as well as to meet industrial demands, for global food security and sustainable production. ( sect.
View Article and Find Full Text PDFBackground And Aims: The genus Solanum includes important vegetable crops and their wild relatives. Introgression of their useful traits into elite cultivars requires effective recombination between hom(e)ologues, which is partially determined by genome sequence differentiation. In this study we compared the repetitive genome fractions of wild and cultivated species of the potato and tomato clades in a phylogenetic context.
View Article and Find Full Text PDFNext-generation genome mapping through nanochannels (Bionano optical mapping) of plant genomes brings genome assemblies to the 'nearly-finished' level for reliable and detailed gene annotations and assessment of structural variations. Despite the recent progress in its development, researchers face the technical challenges of obtaining sufficient high molecular weight (HMW) nuclear DNA due to cell walls which are difficult to disrupt and to the presence of cytoplasmic polyphenols and polysaccharides that co-precipitate or are covalently bound to DNA and might cause oxidation and/or affect the access of nicking enzymes to DNA, preventing downstream applications. Here we describe important improvements for obtaining HMW DNA that we tested on crops and wild relatives.
View Article and Find Full Text PDF