Publications by authors named "P G Thirolf"

Article Synopsis
  • Today's precise timekeeping relies on optical atomic clocks, but nuclear clocks, using nuclear transitions, could offer enhanced accuracy for various scientific applications.
  • The elusive "Thorium Isomer" (Th) is a potential candidate for a nuclear clock, which has been under investigation for decades but only recently confirmed through direct detection in 2016.
  • Significant advances in characterizing Th's properties have been made, including determining its half-life and excitation energy, culminating in the first observation of its radiative decay, paving the way for further developments in precise timekeeping.
View Article and Find Full Text PDF

Optical atomic clocks use electronic energy levels to precisely keep track of time. A clock based on nuclear energy levels promises a next-generation platform for precision metrology and fundamental physics studies. Thorium-229 nuclei exhibit a uniquely low-energy nuclear transition within reach of state-of-the-art vacuum ultraviolet (VUV) laser light sources and have, therefore, been proposed for construction of a nuclear clock.

View Article and Find Full Text PDF

We designed a geometrical solution for a small animal in-beam positron emission tomography (PET) scanner to be used in the project SIRMIO (Small animal proton irradiator for research in molecular image-guided radiation-oncology). The system is based on 56 scintillator blocks of pixelated LYSO crystals. The crystals are arranged providing a pyramidal-step shape to optimize the geometrical coverage in a spherical configuration.

View Article and Find Full Text PDF

The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks. This nuclear clock will be a unique tool for precise tests of fundamental physics.

View Article and Find Full Text PDF

We present here simulation results of the laser-driven acceleration of gold ions using the EPOCH code. Recently, an experiment reported the acceleration of gold ions up to 7 MeV/nucleon with a strong dependency of the charge-state distribution on target thickness and the detection of the highest charge states [Formula: see text]. Our simulations using a developmental branch of EPOCH (4.

View Article and Find Full Text PDF