Over the past decades, the development of nanomaterials has played an important role in the most intriguing aspects of new technologies in several scientific fields, such as nanoelectronics, nanomedicine [...
View Article and Find Full Text PDFThe development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives.
View Article and Find Full Text PDFThe development of biocompatible composites constituted by polydopamine and fluorescent carbon dots represents a promising way of exploiting the extraordinary adhesive properties of polydopamine for multi-purpose technologies. Here, a supramolecular complex is realized by the assembly of dopamine on the carbon dots surface, and the optical and structural properties are investigated by means of different spectroscopic techniques, from time-resolved fluorescence to Raman and NMR spectroscopies. The results suggest that the catechol unit of dopamine plays the main role in the formation of the supramolecular complex, in which carbon nanodot fluorescence emission is quenched by a photoinduced electron transfer process.
View Article and Find Full Text PDFThe study reports the use of nanoassembly based on cationic cyclodextrin carbon nanotubes (CNT-CDs) and ferrocenylcarnosine (FcCAR) for electrochemical sensing of Hg(II) in aqueous solution. β-cyclodextrins (CDs) were grafted onto CNTs by a click chemistry reaction between heptakis-(6-azido-6-deoxy)-β-cyclodextrin and alkyne-terminated CNTs. The cationic amine groups on the CD units were produced by the subsequent reduction of the residual nitrogen groups.
View Article and Find Full Text PDFPolymer-based systems have been demonstrated in novel therapeutic and diagnostic (theranostic) treatments for cancer and other diseases. Polymers provide a useful scaffold to develop multifunctional nanosystems that combine various beneficial properties such as drug delivery, bioavailability, and photosensitivity. For example, to provide passive tumour targeting of small drug molecules, polymers have been used to modify and functionalise the surface of water-insoluble drugs.
View Article and Find Full Text PDF