Publications by authors named "P G Kazansky"

Article Synopsis
  • Researchers have developed a new label-free computational microscopy technique called PT imaging (PTI) that allows for 3D imaging of biomolecules by measuring their permittivity tensor (PT), which reveals how they interact with light.
  • PTI utilizes oblique illumination and polarization-sensitive detection to encode PT into images, tackling previous challenges in achieving high-resolution imaging of various biological samples such as mouse brain tissue and infected cells.
  • This method outperforms older techniques and comes with open-source software and modular hardware, making it accessible for wider adoption in the scientific community.
View Article and Find Full Text PDF

We demonstrate that the temporal contrast of femtosecond light pulses is a critical parameter in laser writing inside transparent dielectrics, allowing different material modifications. In particular, anisotropic nanopores in silica glass are produced by high-contrast of 10 femtosecond Yb:KGW laser pulses rather than low-contrast of 10 Yb fiber laser pulses. The difference originates in the fiber laser storing a third of its energy in a post-pulse of up to 200 ps duration.

View Article and Find Full Text PDF

Amplifying radially and azimuthally polarized beams is a significant challenge due to the instability of the complex beam shape and polarization in inhomogeneous environment. In this Letter, we demonstrated experimentally an efficient approach to directly amplify cylindrical-vector beams with axially symmetric polarization and doughnut-shaped intensity profile in a picosecond MOPA system based on a double-clad ytterbium-doped tapered fiber. To prevent polarization and beam shape distortion during amplification, for the first time to the best of our knowledge, we proposed using the spun architecture of the tapered fiber.

View Article and Find Full Text PDF

Advanced coloration methods are of pivotal importance in science, technology, and engineering. However, 3D structural colors that are critical for emerging multidimensional information representation and recording are rarely achievable. Here, a facile voxel-level programmable 3D structural coloration in the bulk lithium niobate (LiNbO ) crystal is reported.

View Article and Find Full Text PDF

Photosensitivity in nature is commonly associated with stronger light absorption. It is also believed that artificial optical anisotropy to be the strongest when created by light with linear polarization. Contrary to intuition, ultrafast laser direct writing with elliptical polarization in silica glass, while nonlinear absorption is about 2.

View Article and Find Full Text PDF