Publications by authors named "P G Hitchen"

Conjugate vaccines produced either by chemical or biologically conjugation have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccine assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel biotechnological platform that overcomes the limitations of the current conjugate vaccine design method(s).

View Article and Find Full Text PDF

Glycoengineering of recombinant glycans and glycoconjugates is a rapidly evolving field. However, the production and exploitation of glycans has lagged behind that of proteins and nucleic acids. Biosynthetic glycoconjugate production requires the coordinated cooperation of three key components within a bacterial cell: a substrate protein, a coupling oligosaccharyltransferase, and a glycan biosynthesis locus.

View Article and Find Full Text PDF

Brucellosis is a global disease and the world's most prevalent zoonosis. All cases in livestock and most cases in humans are caused by members of the genus that possess a surface O-polysaccharide (OPS) comprised of a rare monosaccharide 4-deoxy-4-formamido-D-mannopyranose assembled with α1,2 and α1,3 linkages. The OPS of the bacterium is the basis for serodiagnostic tests for brucellosis.

View Article and Find Full Text PDF

In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the proteome when glycosylation is disrupted.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is generally accompanied by high mortality and low cure rate. CCAAT enhancer-binding proteins (CEBPs) are transcriptional regulators that play a key role in maintaining liver function. Altered expression of C/EBPα and C/EBPβ occurs in many tumours including HCC.

View Article and Find Full Text PDF