Publications by authors named "P Furmanski"

Previous work done by our laboratory described the use of an immunocompetent spontaneous melanoma-prone mouse model, TGS (TG-3/SKH-1), to evaluate treatment outcomes using inhibitors of glutamatergic signaling and immune checkpoint for 18 weeks. We showed a significant therapeutic efficacy with a notable sex-biased response in male mice. In this follow-up 18-week study, the dose of the glutamatergic signaling inhibitor was increased (from 1.

View Article and Find Full Text PDF

Mouse models that reflect human disorders provide invaluable tools for the translation of basic science discoveries to clinical therapies. However, many of these in vivo therapeutic studies are short term and do not accurately mimic patient conditions. In this study, we used a fully immunocompetent, transgenic mouse model, TGS, in which the spontaneous development of metastatic melanoma is driven by the ectopic expression of a normal neuronal receptor, mGluR1, as a model to assess longitudinal treatment response (up to 8 months) with an inhibitor of glutamatergic signaling, troriluzole, which is a prodrug of riluzole, plus an antibody against PD-1, an immune checkpoint inhibitor.

View Article and Find Full Text PDF

Estrogen contributes to the development of breast cancer through estrogen receptor (ER) signaling and by generating genotoxic metabolites that cause oxidative DNA damage. To protect against oxidative stress, cells activate nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream cytoprotective genes that initiate antioxidant responses and detoxify xenobiotics. Nrf2 activation occurs by inhibiting the protein-protein interaction (PPI) between Nrf2 and its inhibitor Keap1, which otherwise targets Nrf2 for ubiquitination and destruction.

View Article and Find Full Text PDF

The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice.

View Article and Find Full Text PDF

Ductal carcinoma (DCIS), which accounts for one out of every five new breast cancer diagnoses, will progress to potentially lethal invasive ductal carcinoma (IDC) in about 50% of cases. Vitamin D compounds have been shown to inhibit progression to IDC in the MCF10DCIS model. This inhibition appears to involve a reduction in the cancer stem cell-like population in MCF10DCIS tumors.

View Article and Find Full Text PDF