Publications by authors named "P Friedlingstein"

In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.

View Article and Find Full Text PDF

Achieving net zero global emissions of carbon dioxide (CO), with declining emissions of other greenhouse gases, is widely expected to halt global warming. CO emissions will continue to drive warming until fully balanced by active anthropogenic CO removals. For practical reasons, however, many greenhouse gas accounting systems allow some "passive" CO uptake, such as enhanced vegetation growth due to CO fertilisation, to be included as removals in the definition of net anthropogenic emissions.

View Article and Find Full Text PDF

Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in terrestrial ecosystems, but its global importance remains uncertain. Accurately modeling and predicting CUE on a global scale is challenging due to inconsistencies in measurement techniques and the complex interactions of climatic, edaphic, and biological factors across scales. The link between microbial CUE and soil organic carbon relies on the stabilization of microbial necromass within soil aggregates or its association with minerals, necessitating an integration of microbial and stabilization processes in modeling approaches.

View Article and Find Full Text PDF

Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs.

View Article and Find Full Text PDF

Earth System Models (ESMs) continue to diagnose a wide range of carbon budgets for each level of global warming. Here, we present emergent constraints on the carbon budget as a function of global warming, which combine the available ESM historical simulations and future projections for a range of scenarios, with observational estimates of global warming and anthropogenic CO emissions to the present day. We estimate mean and likely ranges for cumulative carbon budgets for the Paris targets of 1.

View Article and Find Full Text PDF