The ongoing discussion regarding the use of mixed or pure cultures of hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess applications persists, with each option presenting its own advantages and disadvantages. To address this issue, a comparison of methane (CH) yield between a novel methanogenic archaeon belonging to the species Methanothermobacter marburgensis (strain Clermont) isolated from a biological methanation column, and the community from which it originated, was conducted. This comparison included the type strain M.
View Article and Find Full Text PDFTaken separately, a single sweet sorghum stem bioconversion process for bioethanol and biomethane production only leads to a partial conversion of organic matter. The direct fermentation of crushed whole stem coupled with the methanization of the subsequent solid residues in a two-stage process was experimented to improve energy bioconversion yield, efficiency, and profitability. The raw stalk calorific value was 17,144.
View Article and Find Full Text PDFIn recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles.
View Article and Find Full Text PDFBioresour Technol
January 2021
Complex organic substrates represent an important and relevant feedstock for producing hydrogen by Dark Fermentation (DF). Usually, an external microbial inoculum originated from various natural environments is added to seed the DF reactors. However, H yields are significantly impacted by the inoculum origin and the storage conditions as microbial community composition can fluctuate.
View Article and Find Full Text PDF