Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms.
View Article and Find Full Text PDFBackground: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults.
Methods: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days).
Introduction: Hematoma expansion (HE) after intracerebral hemorrhage (ICH) is associated with short-term mortality, but its impact on long-term prognosis is still unclear. The aim of this study was to evaluate the impact of HE on long-term survival and functional status after spontaneous ICH.
Methods: Consecutive patients admitted with spontaneous ICH were prospectively enrolled and followed up for a minimum of 2 years.
Background: Dural arteriovenous fistulas are intracranial vascular malformations, fed by dural arteries and draining venous sinuses or meningeal veins. Clinical course varies widely and ranges from benign with spontaneous remission to fatal, due to cerebral hemorrhage. In a 10-year single institution experience, clinical presentation of dural arteriovenous fistulas, and in particular headache and angiographic features, as well as long-term outcome were analyzed.
View Article and Find Full Text PDFBrain iron load is one of the main neuropathologic hallmarks of Parkinson's disease (PD). Previous studies indicated that iron in the substantia nigra (SN) is related to disease duration and motor impairment. We explore, through a cross-sectional study, the association between brain iron distribution, evaluated by T2*-weighted magnetic resonance imaging (T2*), and clinical features in a cohort of patients with PD.
View Article and Find Full Text PDF